

Unit:
Designing and Developing Object-Oriented

Computer Programs

Assignment title:
Sokoban

Sample Marking Scheme

Markers are advised that, unless a task specifies that an answer be provided in a
particular form, then an answer that is correct (factually or in practical terms) must be
given the available marks. If there is doubt as to the correctness of an answer, the relevant
NCC Education materials should be the first authority.

This marking scheme has been prepared as a guide only to markers and there will
frequently be many alternative responses which will provide a valid answer.

Each candidate’s script must be fully annotated with the marker’s comments (where
applicable) and the marks allocated for each part of the tasks.

Throughout the marking, please credit any valid alternative point.

Where markers award half marks in any part of a task, they should ensure that the
total mark recorded for the task is rounded up to a whole mark.

Marker's comments:

Moderator's comments:

Mark:

Moderated mark:

Final mark:

Penalties applied for academic malpractice:

Page 2 of 4
Designing and Developing Object-Oriented Computer
Programs

© NCC Education Limited 2020

Task Guide Maximum
Marks

1 The Application

The program algorithms should make effective use of all the tools
students have available - at a bare minimum, it should involve
functions, loops, selections classes, objects, and either array or
string manipulation. The 50 marks for this section are broken down
as follows:

Appropriate use of objects

There should be at least the following classes: Player, Level, and
GameElement (3 marks each). One additional mark is available for
any other sensible classes used to improve architecture.

Handling User Interaction
The program should set up a GUI that allows for the display of
individual squares (3 marks), the moving of the player (2 marks), the
updating of the display to reflect moves (3 marks), and reflecting
underlying game state of the levels (2 marks) .

Game Logic
It will be necessary for the game to allow crates to be moved if
unobstructed (2 marks), and prevent crates moving if blocked by
walls (2 marks) and other crates (2 marks). The game should identify
when levels have been completed (2 marks) and when they have been
failed (2 marks).

Levels
The game will need to move between levels (2 marks) and implement
the specified functionality for each. Level two should introduce a
one-shot pistol (2 marks) and the logical and UI elements needed to
represent it (2 mark). Level three should introduce a phase system
(2 marks) and the logical and UI elements needed to represent it (2
marks).

Encapsulation and Abstraction
The implementation should have classes appropriately
encapsulated, with internal fields set as private (2 marks), and
accessor methods provided for each (2 marks). Classes should
come with appropriate constructors (2 marks). The system as a
whole should show an appropriate amount of coupling (2 marks) and
cohesion (2 marks).

10

10

10

10

10

50

2 Testing Data

Testing data should be sufficient to provide suitable coverage of all
equivalence classes, and should use black box and white box testing
to explore each function. The 25 marks allocated to this section of
the coursework is broken down as follows:

Page 3 of 4
Designing and Developing Object-Oriented Computer
Programs

© NCC Education Limited 2020

Task Guide Maximum
Marks

Develop a test plan

The task plan should incorporate both white box (2 marks) and black
box (2 marks) testing. It should incorporate equivalence cases (2
marks) and boundary checking (2 marks). It should also incorporate
a short report discussing the testing data and any regression testing
that was required as a result of errors encountered (2 marks).

Implement test Plan

The report should include a full log of the result of user testing (2
marks), including tables of test data versus actual and expected
results (2 marks). Units should be tested in isolation (4 marks) and
then integrated (2 marks).

Making effective use of exception handling

When an exception can be thrown during the program’s operation, it
should be caught and handled appropriately. Testing data should
identify where there are potential exceptions to be thrown (2 marks),
and the code should provide the appropriate structures for dealing
with it (3 marks)]

10

10

5

25

3 Design Documentation

Students should submit a fully detailed UML diagram of their
classes. These should include relationships between classes as
well as the attributes and methods that each class exposes.

Class relationships
Class relationships should be documented in terms of the nature of
their relationship (3 marks) and their cardinality (2 marks).

Methods and Attributes
Each attribute of each class must be given (5 marks) along with
their visibility and type (5 marks). Similarly, each method must be
given (5 marks) along with visibility, return type and parameters (5
marks)

5

20

25

Page 4 of 4
Designing and Developing Object-Oriented Computer
Programs

© NCC Education Limited 2020

Learning Outcomes matrix

Task Learning Outcomes
assessed

Marker can differentiate
between varying levels of
achievement

1 1, 2, 3 Yes

2 1, 4 Yes

3 2, 5 Yes

Grade descriptors

Learning Outcome Pass Merit Distinction

Design object-oriented
programmes to address
loosely-defined
problems

Provide adequate
design to address
the specification

Provide detailed
and appropriate
design to address
the specification

Provide wholly
appropriate and
innovative design
that meets the
specification

Implement object-
oriented programmes
from well-defined
specifications

Provide adequate
design to address
the specification

Provide detailed
and appropriate
design to address
the specification

Provide wholly
appropriate and
innovative design
that meets the
specification

Develop object-oriented
programmes that reflect
established
programming and
software engineering
practice

Show adequate
development

Show sound and
appropriate
development

Show innovative
and highly
appropriate
development

Develop test strategies
and apply these to
object-oriented
programmes

Show adequate
development and
application of
testing strategies

Show sound and
appropriate
development and
application of
testing strategies

Show innovative
and highly
appropriate
development and
application of
testing strategies

Develop design
documentation for use
in program
maintenance and end-
user documentation

Show adequate
development of
materials

Show sound and
appropriate
development of
materials

Show innovative
and highly
appropriate
development of
materials

