

Chemistry

SAMPLE

Examination Paper

Answer ALL questions.

Clearly cross out surplus answers.

Time: 2 hours

The maximum mark for this paper is 100.

Any reference material brought into the examination room must be handed to the invigilator before the start of the examination.

Question 1

- a) Elements are the simplest chemical substances and are made up of atoms. Atoms contain three simple sub-atomic particles: protons, neutrons and electrons. The protons and neutrons are found in the nucleus and the electrons travel around the nucleus.
 - According to Quantum Mechanics, what is the name given to area of the atom where there is a high possibility of finding an electron?
 - ii) The electrons in these areas have to obey the Pauli exclusion principle. What does this principle state?
- **b)** The two main isotopes of carbon are ${}^{12}C$ and ${}^{13}C$.
 - i) What is the definition of an isotope?
 - ii) Copy the table below and for each isotope give the number of protons, electrons and neutrons.

Isotope	Number of protons	Number of neutrons	Number of electrons
¹² C			6
¹³ C	6		

Isotope	Number of protons	Number of neutrons	Number of electrons
¹² C	6	6	6
¹³ C	6	7	6

- iii) Calculate the number of carbon atoms in 32g of carbon solid.
- c) The three main trends in the Periodic Table are atomic size (radii), ionisation energy and electronegativity.
 - i) Define the term "first ionisation energy".

1

2

Marks

2

- ii) Write the equation for the 1st ionisation of one mole of lithium atoms in the gaseous state to form one mole of gaseous lithium ions.
- iii) Describe and explain what happens to the size of an atom going across a period.
- d) Electronegativity values can be used to infer the type of bonding that might be present in a compound. Some electronegativity values can be seen in the table below.

Element	Electronegativity (Pauling Scale)
Li	1.0
Na	0.9
К	0.8
F	4.0
Cl	3.0
Br	2.8

- i) Use the table above to find out which compound will have bonds with the most ionic character. Work out an actual overall electronegativity value for the bond in this compound.
- ii) Intermolecular forces can be found in a number of covalent compounds. What 1 is the name of the main intermolecular force found in water?
- iii) The electronic structure and shape of various covalent molecules, like beryllium 3 fluoride, can be worked out using a number of theories. Draw a Lewis dot/cross diagram for beryllium fluoride and work out the shape of the molecule using the VSEPR theory. Show ALL of the outer electrons in the Lewis diagram.

Total 20 Marks

Question 2

- a) Ammonia gas (NH₃) is produced by the Haber process. This involves a reversible reaction with hydrogen and nitrogen gases acting as the reactants. The production of ammonia is an exothermic process.
 - i) Write a balanced equation for the formation of ammonia. Include state symbols.
- 2
- ii) The Haber process is described as being in equilibrium. What does this mean? 2

Marks

iii)	Iron is used as a catalyst in the Haber process. What term can be used to describe this type of catalyst?	1
iv)	A small scale production was carried out in a one litre flask. The following concentrations were found at equilibrium: N_2 (4 mol.l ⁻¹), H ₂ (2 mol.l ⁻¹) and NH ₃ (6 mol.l ⁻¹)	3
	Write an equilibrium constant equation for the process and then use the data to calculate the equilibrium constant K (with units) for the reaction.	
v)	The Haber process is governed by Le Chatelier's principle. Define this principle.	1

- v) Explain, in detail, what would happen to the yield of ammonia if 1) the pressure 4 was increased, and 2) the temperature increased.
- b) The Haber process is an exothermic process. Use the following table of bond enthalpies to work out the overall enthalpy value for the Haber Process.

Bond	Bond enthalpy (kJmol ⁻¹)
N	945
N — H	388
Н—Н	436

- c) Ammonia gas dissolves in water to form a 'weak base' solution. The chemical reaction for this is: $NH_{3(g)} + H_2O_{(I)} \xrightarrow{} NH_4OH_{(aq)}$
 - i) Define what is meant by a 'weak base'.
 - ii) As well as weak bases there are weak acids. Ethanoic acid (CH₃COOH) is found in vinegar and is a weak acid. Calculate the pH of a 0.135 mol.l⁻¹ solution of ethanoic acid if its ka is 1.7 x 10⁻⁵.

Total 20 Marks

Question 3

a) Transition metal elements and the complexes they form play a crucial role in chemistry.

i)	What is the definition of a transition metal?	1
ii)	State the electronic configuration (spectroscopic) for Ni ²⁺ .	1

iii) The level of nickel ions in a solution can be calculated using a complexometric 3 titration. In a titration, a 20.0 cm³ sample of a nickel(ii) ion solution required 17.0 cm³ of 0.1 mol. I⁻¹ EDTA to completely react with all the nickel(ii) ions.

What is the concentration of the nickel (ii) ion solution in mol.I⁻¹?

iv) Like nickel, manganese is a transition metal with many oxidation states.
 Complete the table by working out the oxidation state of manganese in each of these different chemical species.

Chemical species	Oxidation state
KMnO₄	
MnO	

Chemical species	Oxidation state
KMnO₄	7+
MnO	2+

- **b)** Transition metal ions are found at the centre of many transition metal complexes where they are attached to ligands.
 - i) What type of bond do ligands form with the transition metals ions in these complexes?

ii) Complete the following table which contains information about a number of different transition metal-ligand complexes.

Formula of transition metal-ligand complex	Name
Na ₃ [Fe(CN) ₆]	
	Tetraamminecopper (II) chloride
[Ni(NH ₃) ₆]Cl ₂	

- c) Explain how transition metal complexes can be coloured.
- d) Nickel can be used as a catalyst in a number of organic reactions.
 - i) Ethene (C₂H₄) can be converted into ethane (C₂H₆) using hydrogen and the catalyst nickel. What type of reaction is this?
 - ii) Ethene can also undergo a bromination reaction to form 1,2-dibromoethane.4 Write a mechanism for this reaction.

Total 20 Marks

1

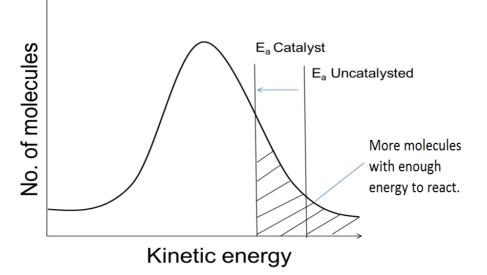
Question 4

a) Calcium carbonate reacts with hydrochloric acid to give calcium chloride, carbon dioxide and water. In the reaction 10g of calcium carbonate powder was reacted with 50 cm³ of 0.1 mol.l⁻¹ hydrochloric acid.

CaCO_{3 (s)} + 2HCl (aq) ----- CaCl_{2(aq)} + CO_{2(g)} + H₂O(I)

- i) How many moles of calcium carbonate and hydrochloric acid were involved in this reaction? Show all of your working.
- ii) The following results were obtained from the reaction. Work out the rate of reaction between two and four minutes.

<i>Time</i> (minutes)	0	2	4	6	8	10
<i>Total volume of carbon dioxide production</i> (cm ³)	0	42	68	78	92	104


- iii) What individual changes could you make to the reaction set-up in order to decrease the rate of this reaction?
- iv) Explain how the changes in iii) would slow down the rate of the reaction.
- **b)** Reactions can be termed as either exothermic or endothermic. The following reaction is exothermic.

H_{2 (g)} + O_{2 (g)} ------ H₂O (I)

i) What is meant by the term exothermic?

1

- ii) Draw a diagram representing the range of molecular energies in a gas.
- iii) On the same diagram, draw a curve to represent the energies of the gas molecules when the temperature is increased by 10°C.
- iv) Platinum can be used as a catalyst in this reaction. Use your diagram, adding on any features you think appropriate, to explain the effect a catalyst has on the rate of the reaction.

- v) Explain why a catalyst has no effect on the enthalpy (heat) of reaction.
- c) Reaction rate data can be used to investigate the kinetics of a chemical reaction. Below are the results from a kinetics experiment on the reaction between acidified potassium permanganate (H⁺/KMnO₄) and hydrogen peroxide (H₂O₂).

Concentration of H ₂ O ₂ (mol.l ⁻¹)	Concentration of H ⁺ /KMnO ₄ (mol.I ⁻¹)	Initial Rate (mol.I ⁻¹ s ⁻¹)
0.02	0.20	6.0 x 10 ⁻⁵
0.02	0.40	1.2 x 10 ⁻⁴
0.04	0.20	1.2 x 10 ⁻⁴

i) What is the overall order of the reaction?

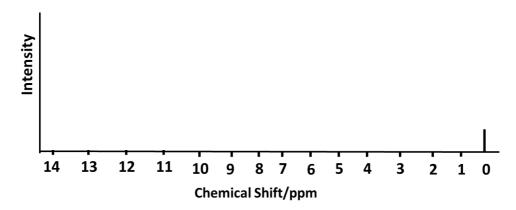
- ii) Write a rate equation for this reaction.
- **iii)** Use the information in the table above to work out a value for k.

Total: 20 marks

1

1

Marks


Δ

Question 5

- a) A chemistry student finds a bottle with just the molecular formula, C₃H₆O₂, written on it. She is not sure whether the compound in the bottle is ethylethanoate or propanoic acid.
 - i) Draw full structural formulae for both compounds.
 - ii) Chemical analysis was carried out on the sample in the bottle. ¹H-NMR spectroscopy was chosen.

Draw out the ¹H-NMR spectrum diagram and complete it to show what the high resolution ¹H-NMR spectra for propanoic acid would look. Make sure you have information about any splitting and include the reference compound TMS.

You may wish to use the chemical shift table found in the data sheet at the end of your examination paper.

- iii) A simple chemical test could also be used to tell the two suspected compounds apart. Suggest a simple chemical test that the chemist could have used. What observations would be made with each compound?
- iv) Ethyl ethanoate and propanoic acid do not contain a chiral carbon centre. What 1 is a chiral centre?
- v) Propanoic acid can be changed into propanal and propan-1-ol.
 What type of reaction is this and what reagent would be used to carry it out?
- **b)** Benzene is an aromatic compound that is found in a variety of different medicines, including aspirin. It can undergo a variety of electrophilic substitution reactions.
 - i) What shape is the benzene molecule?

1

ii)	Give the reagents and conditions necessary for the conversion of benzene to nitrobenzene.	2
iii)	Write a mechanism for this reaction using curly arrows. Explain what is happening at each stage including the formation of any ions.	5

Total 20 Marks

End of paper

1																	18
1																	2
Н																	He
1.008	2	-										13	14	15	16	17	4.0026
3	4											5	6	7	8	9	10
Li	Be											В	С	Ν	0	F	Ne
6.94	9.0122											10.81	12.011	14.007	15.999	18.998	20.180
11	12											13	14	15	16	17	18
Na	Mg											ΑΙ	Si	Ρ	S	CI	Ar
22.990	24.305	3	4	5	6	7	8	9	10	11	12	26.982	28.085	30.974	32.06	35.45	39.948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098	40.078	44.956	47.867	50.942	51.996	54.938	55.845	58.933	58.693	63.546	65.38	69.723	72.630	74.922	78.97	79.904	83.798
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те		Xe
85.468	87.62	88.906	91.224	92.906	95.95	(98)	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
55	56	57-71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	*	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
132.91	137.33		178.49	180.95	183.84	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.2	208.98	(209)	(210)	(222)
87	88	89-103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra	#	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	MC	Lv	Ts	Og
(223)	(226)	π	(265)	(268)	(271)	(270)	(277)	(276)	(281)	(280)	(285)	(286)	(289)	(289)	(293)	(294)	(294)
	* Lanthanide		57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
			La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
	series		138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.05	174.97
		89	90	91	92	93	94	95	96	97	98	99	100	101	102	103	
	# Actinide Series		Ac	Th	Ра	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
		(227)	232.04	231.04	238.03	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)	

Periodic Table with the mass number and atomic number of each element.

Nuclear Magnetic Spectroscopy data table Approximate proton chemical shift values (δ) relative to TMS peak (0 on the scale)

Type of proton	Chemical Shift (ppm)
R CH ₃	0.9-1.1
R CH ₂R	1.31.5
H ₃ CC 0 R CH ₂ -C	
	2.02.7
R_2 HC C Aldehyde, Ketone, CAcid and Ester fragment	
	4.8-5.0
RCH ₂ X	3.2-4.3
R OH	4.0-4.5
RCOOH	11.0-11.3
R CHO	9.8-10.2
ArCH ₃	2.3-3.0
ArOH	7.0-7.3
ArH	7.4-7.6

R = alkyl group Ar = aryl (aromatic) group X = halogen

Infrared Spectroscopy data table

Type of bond	Type of compound	Wave number range (cm ⁻¹)
hydrogen bonded O – H stretch	Alcohol	3200 to 3570
not hydrogen bonded O – H		33590 to 3570
stretch		
C – H stretch	Alkane	2853 to 2962
C – H bend		1340 to 1485
C - H stretch in $C = C - H$	Alkene	3010 to 3095
C = C stretch		1620 to 1680
C=O stretch	Aldehyde, Ketones,	1680 to 1750
	Carboxylic acids	
	and Esters	
hydrogen bonded O – H stretch in	Carboxylic acids	2500 to 3500
-COOH		
	Halogenalkanes	
C-Br		500 to 600
C-CI		650-800
C – H stretch	benzene ring	3000 to 3100

Formulae

 $\Delta H = cxmx\Delta T$ (4.18 kJ kg⁻¹ °C⁻¹)

% yield= <u>Actual yield</u> Theoretical yield ×100

% atom economy= <u>Mass of desired product(s)</u> Total mass of reactants ×100

n=cxV

 $\frac{C_1 x V_1}{n_1} = \frac{C_2 x V_2}{n_2}$

n= mxGFM

rate = $\Delta quantity$ $\Delta time$

pH+ pOH=14

pH= log₁₀ [H⁺]

 $K_w = [H^+] \times [OH^-]$

pKa= log₁₀ Ka

pH =1/2 pKa -1/2 log₁₀ [Concentration]

Physical constants

Avogadro's Constant $6 \cdot 02 \times 10^{23} \text{ mol}^{-1}$ Charge on electron $1 \cdot 60 \times 10^{-19} \text{ C}$