

Databases

SAMPLE TIME CONSTRAINED ASSESSMENT MARKING SCHEME

This marking scheme has been prepared as a **guide only** to markers. This is not a set of model answers, or the exclusive answers to the questions, and there will frequently be alternative responses which will provide a valid answer. Markers are advised that, unless a question specifies that an answer be provided in a particular form, then an answer that is correct (factually or in practical terms) **must** be given the available marks.

If there is doubt as to the correctness of an answer, the relevant NCC Education materials should be the first authority.

Throughout the marking, please credit any valid alternative point.

Where markers award half marks in any part of a question, they should ensure that the total mark recorded for the question is rounded up to a whole mark.

a) Explain TWO (2) functions of a DBMS, with an example and why this is important.

4

Mark Scheme

Concurrency (1) ensures multiple users can use the database at the same time (1) Security (1) Allows authorised users to gain access to relevant parts of the database (1) keep unauthorised users out of the database(1) Backup and recovery (1) Ensures that the database can be recovered in the event of a failure (1) Integrity (1) Data descriptions (1) Describes the purpose of each field (1) Stores data in linked tables (1) To avoid redundancy (1)

1 mark each point, valid alternatives accepted with 1 mark for explanation of why important max 2 points for each function and example max 4

b) Identify FOUR (4) types of records/entities a car sales showroom might store 4 data about.

Mark Scheme

Cars (1)/ Customer (1) / Staff (1) / Sales (1) / Customer Finance (1) Any suitable alternative / Fields alone do not count / maximum 4 marks

c) If an ERD has a many-to-many relationship describe what could be done to fix
 2
 it.

Mark Scheme

break the many-to-many relationship into two one-to-many relationships (1) create a third (join) table that has the primary keys of each of the new tables (1)

2

2

Question 2

a) The following table is in *Third Normal Form* (3NF). Suggest appropriate data types and keys (if applicable) for the attributes listed.

Attribute Name	Data Type	Key
ServiceID	Number (Auto increment)	Primary Key
CustomerID		
CarRegNo		
ServiceDate		
StaffID		

Mark Scheme

Attribute Name	Data Type	Key
ServiceID	Number (Auto	Primary Key
	increment)	
CustomerID	Number/Integer (1)	Foreign Key (1)
CarRegNo	VarChar (8)	
ServiceDate	Date/Time	
StaffID	Number/Integer (1)	Foreign Key (1)

1 mark for each correct / appropriate data type used (character length is not required for the mark to be awarded). Customer and Staff IDs should be identified as a foreign key (1 mark for each one) Correct alternatives are to be marked, to a maximum of 6 marks.

b) Identify TWO (2) properties of a *Candidate key*.

Mark Scheme

Any two of the following:

- It must contain unique values
- May have multiple attributes
- Must not contain null values
- Should contain minimum fields to ensure uniqueness
- Uniquely identify each record in a table.
- c) Explain the term *Optionality (in the context of an ERD)* and provide a suitable example.

Mark Scheme

Specifies if entities on one side must be joined to an entity on the other side (1) any valid example (1)

Consider the following scenario shown below:

A college student studies a number of modules and is issued with a transcript of results at the end of the year.

a) Draw an *Entity-Relationship (ER) diagram* to represent the above scenario.

5

5

Mark Scheme

- 1 mark for each correct entity, to a maximum of 3 marks.
- 1 mark for each correct relationship, to a maximum of 2 marks (0.5 for each correct notation).
- **b)** Identify all of the primary **and** foreign keys for the ER model in question **3 a**).

Mark Scheme

Student: StudentID (PK) – or any appropriate field name

Module: ModuleID (PK)

Student Result (or suitable alternative): StudentID (PK) (FK) ModuleID (PK) (FK)

Or

ResultID (PK) StudentID (FK) ModuleID (FK)

- Award 1 mark for each (PK), to a maximum of 3 marks.
- Award 1 mark for each (FK) to a maximum of 2 marks.
- Alternative naming allowed.

a) Consider the ER diagram shown below for a Doctor's surgery system through which patients can book appointments with a Doctor.

i) Create a CRUD matrix to show the following transactions:

Transaction 1 – add a new appointment for an existing patient Transaction 2 – delete a Doctor Transaction 3 – update a Patient's details Transaction 4 – change the time of an appointment Transaction 5 – produce a list of all appointments including Doctor & Patient details Transaction 6 – add a new patient

Mark Scheme

Transaction	Doctor	Appointment	Patient
T1	R	С	R
T2	D		
T3			U
T4	R	U	R
T5	R	R	R
T6			С

1 mark for each correct row in a table, similar to the one shown above. Maximum 6 marks (award part marks for part correct solutions, round up final mark for question).

b) Identify the CRUD operations in a transaction.

Mark Scheme

CREATE (1) READ (1) UPDATE (1) DELETE (1)

Award any valid alternate explanatory point, to a maximum of 4 marks.

Total 10 Marks

4

2

Question 5

a) What does the acronym SQL stand for?

Mark Scheme

Structured Query Language – award only one (1) point for full answer – no half points allowed.

b) Explain and summarise the purpose of *SQL*.

Mark Scheme

SQL is a database language (1) that allows the database to be manipulated (1) or similar. Award 1 for a summary and 1 for the purpose, to a maximum of 2 marks.

c) Consider the following tables:

tblAnimal

AnimalID	AnimalName	DOB	Туре
117	Leo	12/2/2017	Lion
218	Keeno	12/3/2015	Tiger
342	Darli	9/1/2012	Gorilla
912	Lou-Lou	18/7/2014	Elephant
1116	Doogle	25/4/2016	Elephant
1187	Prince	19/10/2015	Lion

tblKeeper

KeeperID	KeeperName	
1	Cecil Armstrong	
2	Miranda Narzala	
3	Derek Longbottom	
4	Hermoine Garnett	

tblAnimalKeeper

KeeperID	AnimalID
1	117
1	1187
2	912
2	1116
3	218
4	342

i) Write the SQL that produces a list of the animals, type and date of birth in date order. **2**

Mark Scheme

Select * from tblAnimal (1 mark) Orderby DOB (1 mark) Alternative Select AnimalName, DOB, Type from tblAnimal (1 mark)

d) Write the SQL that lists only the names and dates of birth of the lions.

Mark Scheme

Select AnimalName, DOB From tblAnimal (1 mark) Where Type="Lion" (1 mark)

Alternative Select * from tblAnimal (1 mark)

e) Write the SQL that produces a list of all of the animal names, their type and their 3 keeper names.

Mark Scheme

Select AnimalName, Type, KeeperName From tblAnimal, tblKeeper (1 mark) WHERE tblAnimal.AnimalID = tblAnimalKeeper.AnimalID (1 mark) AND tblKeeper.KeeperID = tblAnimalKeeper.KeeperID (1 mark)

Total 10 Marks

Question 6

a) Consider the following table:

tblFood

FoodID	Description	Cost	Туре
3	Chocolate Doughnut	£1.12	Sweet
4	Meat Pie	£0.89	Pies
5	Cheese Pie	£1.02	Pies
6	Danish Pastry	£1.05	Sweet

i) Write the SQL statement that will update the **Pies** type to **Savoury**.

3

Mark Scheme

UPDATE tblFood (1 mark) SET Type "Savoury" (1 mark) WHERE Type = "Pies" (1 Mark) **b)** Consider the following table:

tblltems

ItemID	ItemDescripton	Туре	Price
3	White 6 Seat Dining Table	Table	£399.95
4	Small Oak Coffee Table	Table	£129.99
5	Small Children Wardrobe Pine	Bedroom	£124.99
6	Toddler Bed White	Bedroom	£89.99

i) Write the SQL statement that will delete all of the data held for items where **2** the price is over £300.

Mark Scheme

DELETE from tblltems (1 mark) WHERE Price > 300 (1 mark)

c) Consider the following table:

tblCar

CarlD	Manufacturer	Model	Price
1	Quintec	CityXP	£12,800
2	Smord	Sprint	£15,750
3	Nisax	Family	£21,995

i) Write the SQL statement that will create the table *and* add the data into the newly created table. 5

Mark Scheme

```
CREATE TABLE tblCar(
   CarID int NOT NULL AUTO_INCREMENT,
  Manufacturer char (30),
  Model char (20)
  Price decimal (5,2)
PRIMARY KEY (CarID)
);
3 marks maximum, 1 mark correct syntax for create table, 1 mark for
appropriate correct fields/data types (use discretion), 1 mark for
primary key.
INSERT INTO tblCar (CarlD, Manufacturer, Model, Price)
VALUES (1 mark for correct syntax)
('Quintec','CityXP',12800.00),
('Smord','Sprint',15750.00),
('Nisax','Family',21995.00)
(1 mark for correct data ensure consistency between fields created
and data format / types)
```

Woof Cuts is a grooming salon for dogs. It has several groomers. The customer contacts the salon to make an appointment for their dog. The customer contact details are recorded on the system together with the name and breed of the dog (so that it can be determined if the dog is a small / medium or large breed – and can be charged accordingly). An appointment is made for the dog at an agreed date and time and a member of staff is assigned to that appointment. Special comments are noted on the appointment (e.g. Dog must be muzzled etc.)

A suggested ER model is below:

a) Replicate the data dictionary below for each one of the entities.

20

Using the information provided above, populate it with a range of suitable attributes and associated meta data for each entity.

NB: For clarity it is expected that there will be multiple entries for each entity.

tblCustome	ſ
------------	---

AttributeName	Data Type	Length/Field Size	Key

tblAppointment

AttributeName	Data Type	Length/Field Size	Key

tblStaff

AttributeName	Data Type	Length/Field Size	Key

Mark Scheme

tblCustomer

AttributeName	Data Type	Length/Field Size	Key
CustomerID	AutoNumber		Primary
CustomerName	String	25	
ContactNo	String	15	
NameofDog	String	20	
Breedofdog/Size	String	20	

tblAppointment

AttributeName	Data Type	Length/Field Size	Key
AppointmentID	AutoNumber		Primary
CustomerID	Number/Integer		Foreign Key
StaffID	Number/Integer		Foreign Key
Price	Double /		
	currency		
Comments	String	50	

tblStaff

AttributeName	Data Type	Length/Field Size	Key
StaffID	Autonumber		Primary
StaffFirstName	String	20	
StaffLastName	String	25	

Expectations and grading guidance:

KEYS: Would expect to see all relevant primary / foreign keys (maximum 5 marks)

Each appropriate attribute (0.5 marks to maximum of 6) Each appropriate data type (0.5 marks to maximum of 6) Each appropriate length/field size – use discretion; field sizes shown are just guidance (0.5 mark to maximum 3)

Question 8

a) Explain the purpose of normalisation

Mark Scheme

Reduce / eliminate data redundancy (1) create interlinking/related tables (1)

b) What conditions need to be met if a table is said to be in second normal form 3 (2NF)

Mark Scheme

Any of the following up to a maximum of 3 marks

Primary key contains only one attribute (1) No non-key attributes exist in the relation (1) In 1NF (1 mark) AND Every non-key attribute is functional dependent on the full set of primary key attributes (1)

c) The following table is in first normal form (1NF) you should normalise it to second normal form

5

Students			
FirstName	Surname	Subject	
Adam	George	Art and Design	
Melissa	Brown	Art and Design	
Shabana	Atif	Maths	
Louise	Jenkins	Maths	

Mark Scheme

Students			
ID	FirstName	Surname	Subject
1	Adam	George	1
2	Melissa	Brown	1
3	Shabana	Atif	2
4	Louise	Jenkins	2

Subject		
ID Subject		
1	Art and Design	
2	Maths	

1 mark each for identification of each table (max 2)

1 Mark for each for each ID in each table (max 2)

1 mark for identification of subject ID in student table

- a) Explain each of the following DBMS terms.
 - i) Tuple

Mark Scheme

Tuple: is a row or a record in a table (1 mark)

ii) Attribute

Mark Scheme

Attribute: is a column / field / data item in a table (1 mark)

iii) Data type

Mark Scheme

A data type, is a type of data / it specifies which type of value an attribute has (1 mark)

iv) Optionality

Mark Scheme

Optionality: Specifies if entities on one side must be joined to an entity on the other side (1 mark)

v) Cardinality

Mark Scheme

Cardinality: Shows the type of relationship i.e. 1:M, M:1, M:M (1 mark)

b) Explain the term *referential integrity* and provide an example.

5

Mark Scheme

Referential integrity refers to the accuracy (1) and consistency (1) of data within a relationship. In relationships, data is linked between two or more tables (1). ... Referential integrity requires that, whenever a foreign key value (1) is used it must reference a valid, existing primary key in the parent table. (1) Alternative - 1 mark for each suitable point, to a maximum of 5.

Total 10 Marks

End of paper

Learning Outcomes matrix

Question	Learning Outcomes assessed	Marker can differentiate between varying levels of achievement
1	1,3	Yes
2	3,4	Yes
3	2,3	Yes
4	3	Yes
5	3	Yes
6	5	Yes
7	4,5	Yes
8	2,3	Yes
9	1,2,3,5	Yes

Grade descriptors

Learning Outcome	Pass	Merit	Distinction
Understand the	Demonstrate	Demonstrate	Demonstrate highly
concepts	adequate level of	robust level of	comprehensive level
associated with	understanding	understanding	of understanding
database systems			
Understand the	Demonstrate	Demonstrate	Demonstrate highly
concepts	adequate level of	robust level of	comprehensive level
associated with the	understanding	understanding	of understanding
relational model			
Understand how to	Demonstrate	Demonstrate	Demonstrate highly
design and develop	adequate level of	robust level of	comprehensive level
a database system	understanding	understanding	of understanding
Be able to develop	Show adequate	Show sound and	Show innovative and
a logical database	development	appropriate	highly appropriate
design		development	development
Be able to develop	Show adequate	Show sound and	Show innovative and
a database system	development	appropriate	highly appropriate
using SQL		development	development