

Further Mathematics

SAMPLE

Marking Scheme

This marking scheme has been prepared as a **guide only** to markers. This is not a set of model answers, or the exclusive answers to the questions, and there will frequently be alternative responses which will provide a valid answer. Markers are advised that, unless a question specifies that an answer be provided in a particular form, then an answer that is correct (factually or in practical terms) **must** be given the available marks.

If there is doubt as to the correctness of an answer, the relevant NCC Education materials should be the first authority.

Throughout the marking, please credit any valid alternative point.

Where markers award half marks in any part of a question, they should ensure that the total mark recorded for the question is rounded up to a whole mark.

Answer ALL questions

Question 1

a) Use the factor theorem to show that (x - 4) is a factor of $f(x) = 2x^3 - x^2 - 25x - 12$

$f(4) = 2(4)^3 - (4)^2 - 25(4) - 12 = 0$	(M1 – evaluation of f(4))
\therefore (<i>x</i> – 4) is a factor of <i>f</i> (<i>x</i>)	(A1 - f(4) = 0 and conclusion stated)

b) Hence, or otherwise, fully factorise f(x).

Method 1: Algebraic Long Division

$$\begin{array}{r}
 2x^2 + 7x + 3 \\
x - 4 \overline{\smash{\big)}2x^3 - x^2 - 25x - 12} \\
 2x^3 - 8x^2 \\
 7x^2 - 25x \\
 7x^2 - 28x \\
 3x - 12 \\
 \underline{3x - 12} \\
 0
\end{array}$$

(M1 – Use of Algebraic Long

Divison to obtain $Ax^2 + Bx + C$ where $A, B, C \neq 0$)

$(x-4)(2x^2+7x+3)$	(A1-correct quadratic)		
(x-4)(x+3)(2x+1)	(A1 – correct and fully factorised)		

Method 2: Equating Coefficients

 $2x^3 - x^2 - 25x - 12 \equiv (x - 4)(Ax^2 + Bx + C)$ (M1-linear × quadratic with three non-zero coefficients)

A = 2, B = 7, C = 3 (A1 – All three correct values)

 $(x-4)(2x^2+7x+3) \equiv (x-4)(x+3(2x+1))$ (A1 – Fully factorised)

3

Marks
C) Show that
$$\sum_{r=1}^{n} 4r^2 + 6r + 1 = \frac{n}{3} [4n^2 + 15n + 12]$$

 $\sum_{r=1}^{n} 4r^2 + 6r + 1 = 4 \sum_{r=1}^{n} r^2 + 6 \sum_{r=1}^{n} r + \sum_{r=1}^{n} 1 (M1 - \text{Separate summations})$
 $= \frac{4n}{6} (n+1)(2n+1) + \frac{6n}{2} (n+1) + n$ (M1 - use of summation formulae)
 $= \frac{1}{3}n[2(n+1)(2n+1) + 9(n+1) + 3]$ (M1 - Factorises by n)
 $= \frac{1}{3}n[(4n^2 + 6n + 2) + 9n + 12]$ (at least one intermediate step shown)
 $= \frac{n}{3}[4n^2 + 15n + 14]$ (A1 - All correct with no errors seen)

- d) Given that 3 and 4 + i are roots of the cubic equation $f(x) = x^3 11x^2 + ax + b = 0$
 - i) Find the value of a and the value of b

Third root is (4 - 3i) (B1 – Sight of final root) (x - (4 + 3i))(x - (4 - 3i)) $= x^2 - x(4 - 3i) - x(4 + 3i) + (4 + 3i)(4 - 3i)$ (M1 – correct attempt at using complex roots to obtain a quadratic or cubic not containing i) $= x^2 - 8x + 25$ (A1 – Correct quadratic obtained) $(x - 3)(x^2 - 8x + 25) = x^3 - 8x^2 + 25x - 3x^2 + 24x - 75$ $= x^3 - 11x^2 + 49x - 75$ a = 49, b = -75 (A1 – for both correct) 4

© NCC Education Limited 2017

B1 – Two complex roots correct and reflection of each other in x-axis B1 – Third root at (3, 0)

e) Given
$$f(x) = \frac{3(9x^2+1)}{(3x+1)(3x-1)} \equiv A + \frac{B}{3x+1} + \frac{C}{3x-1}$$
,

i) Find the values of A, B and C

$$\frac{3(9x^{2}+1)}{(3x+1)(3x-1)} \equiv 3 + \frac{6}{(3x+1)(3x-1)}$$
(B1)
$$\frac{6}{(3x+1)(3x-1)} \equiv \frac{A}{3x+1} + \frac{B}{3x-1} \rightarrow A = -3, B = 3$$
(M1 – Either A or B Correct)
$$\frac{3(9x^{2}+1)}{(3x+1)(3x-1)} \equiv 3 + \frac{3}{3x-1} - \frac{3}{3x+1}$$
(A1 – both A and B found and all correct)

ii) Use the quotient rule to differentiate f(x), giving your answer in the form $f'(x) = \frac{-Qx}{(9x^2-1)^2}$

$$f'(x) = \frac{(3x+1)(3x-1)(54x) - 3(9x^2+1)(18x)}{(9x^2-1)^2}$$
(M1-correct un-simplified use of quotient rule)

$$f'(x) = \frac{-108x}{(9x^2-1)^2}$$
 (A1 – for correct simplified quotient with Q=108)

Total 20 Marks

3

Marks

4

1

Question 2

a) A curve has equation $f(x) = \frac{5}{(1+x)(3-2x)}$

i) Express f(x) in terms of its partial fractions. $\frac{5}{(1+x)(3-2x)} \equiv \frac{A}{1+x} + \frac{B}{3-2x}$ $5 \equiv A(3-2x) + B(1+x) \qquad (M1)$ $Let \ x = \frac{3}{2} \rightarrow 5 = \frac{5B}{2} \rightarrow B = 2 \qquad (A1)$ $Let \ x = -1 \rightarrow 5 = 5A \rightarrow A = 1 \qquad (A1)$ $\therefore \frac{5}{(1+x)(3-2x)} \equiv \frac{1}{(1+x)} + \frac{2}{(3-2x)} \qquad (A1)$

b)

- i) Use the binomial theorem to expand f(x) in ascending powers of x, up to and including the term in x^3 , simplifying each term.
- $\frac{1}{1+x} = (1+x)^{-1} \text{ or } \frac{2}{3-2x} = 2(3-2x)^{-1}$ (B1 for either term) $(1+x)^{-1} = 1 - x + x^{2} - x^{3} + \cdots$ (B1-Correct Expansion) $2(3-2x)^{-1} = 2 \times (3^{-1}) \left(1 - \frac{2}{3}x\right)^{-1} = \frac{2}{3} \left(1 - \frac{2}{3}x\right)^{-1}$ (M1- Factorising) $2(3-2x)^{-1} = \frac{2}{3} + \frac{4}{9}x + \frac{8}{27}x^{2} + \frac{16}{81}x^{3} + \cdots$ (A1 - Correct Expansion) Hence, $\frac{5}{(1+x)(3-2x)} = \frac{5}{3} - \frac{5}{9}x + \frac{35}{27}x^{2} - \frac{65}{81}x^{3}$ (A1 - All Correct)
- ii) Determine the range of values of *x* for which the expansion is valid.

$$|x| < 1$$
 or $|x| < \frac{3}{2}$

Hence, valid for |x| < 1 (A1 – considers both and makes conclusion)

 $\frac{d}{dx} \left[\frac{5}{(1+x)(3-2x)} \right] = \frac{d}{dx} \left[(1+x)^{-1} + 2(3-2x)^{-1} \right]$ $-(1+x)^{-2} \quad or \quad -2(-2)(3-2x)^{-2} \quad (M1)$

c) Use your answer to a) to find f'(x) and hence find the x – coordinate of the

$$\frac{4}{(3-2x)^2} - \frac{1}{(1+x)^2}$$
 (A1 – Both Correct)

 $4(1+x)^2 - (3-2x)^2 = 0$ (M1 - sets derivative equal to zero and attempts to solve for x)

 $4(1+2x+x^2) - (9-12x+4x^2) = 0 \rightarrow 20x - 5 = 0$ (M1 – Expands brackets correctly and simplifies to obtain linear equation in x)

$$x = \frac{1}{4} \tag{A1}$$

stationary point of f(x)

d) Write down the equations of all the asymptotes of f(x)

Vertical Asymptotes at x = -1 and $x = \frac{3}{2}$ (B1 – both required)

y = 0

e) Sketch the graph of f(x)
B1 - Correct shape in each quadrant
B1 - Asymptotes at x=-1 and x=3/2 correctly drawn and labelled
B1 - Minimum point at x = ¼ and 5/3 labelled on the y-axis

(B1 – accept x-axis)

Question 3

a)	Given $Z_1 = 4 + \sqrt{2}i$ and $\frac{z_1}{z_2} = 3 + i$, find:	
	i) Z_2 in the form $a + ib$	5
	$Z_2 = (4 + \sqrt{2}i) \div (3 + i)$ (M1)	
	(M1 multiply numerator and denominator by $(3 - i)$ $(12 + \sqrt{2} + 3\sqrt{2}i - 4i)$ (A1) $= (12 + \sqrt{2}) \div 10 + (3\sqrt{2} - 4)i \div 10$ (A1 – Real Part , A1 – Imaginary Part)	
	ii) The argument of Z_2 $Arg(Z_2) = arctan(\frac{3\sqrt{2}-4}{12+\sqrt{2}})$ (M1)	2
	$Arg(Z_2) = 0.018(086)$ (A1 to 3 s.f. or more)	
	iii) The exact value of $ Z_2 $ $(12 + \sqrt{2})^2 = (12 + \sqrt{2})(12 + \sqrt{2})$ $= 144 + 24\sqrt{2} + 2 = 146 + 24\sqrt{2}$	3
	$(3\sqrt{2}-4)^2 = (3\sqrt{2}-4)(3\sqrt{2}-4)$ = $18 - 24\sqrt{2} + 16 = 34 - 24\sqrt{2}$ (B1 – Either Correct)	
	$ Z_2 = \sqrt{(146 - 24\sqrt{2}) + (34 + 24\sqrt{2})} \div 10$ (M1 – Use of	
	Pythagoras)	
	$ Z_2 = \sqrt{1.8} = 3\sqrt{5}/5$ (A1 – accept equivalent form)	

- **b)** Given $Z_3 = -4 + 3i$ and $Z_4 = 3 + 2i$, find
 - i) The modulus of $(Z_4)(Z_3)^2$

$$(-4)^2 + (3)^2 [= 25]$$
 (M1)

$$\sqrt{((3)^2 + (2)^2)} = \sqrt{13}$$
 (B1)

Multiplying together (M1)

$$= 25\sqrt{13} \text{ or } 90.14$$
 (A1)

Marks

2

ii) Show on an Argand diagram the points A and B, where A represents Z_3 and **2** B represents Z_4

B1 – For one correct B1 – For both correct

iii) Find Z_3Z_4 in polar form

Arg
$$(Z_3) = \pi - \arctan\left(\frac{3}{4}\right) = 2.50^c$$
Arg $(Z_4) = \arctan\left(\frac{2}{3}\right) = 0.59^c$ (B1 for either)Hence, $Z_3Z_4 = [5\sqrt{13}, 3.09]$ (B1)iv) Determine angle $A\hat{O}B$ 12.50 - 0.59 = 1.91 (or 109 degrees) (B1)1v) Write Z_4 in exponential form1

$$Z_4 = \sqrt{13}e^{0.59i}$$
 (B1)

Total 20 Marks

Question 4

a) Prove that $cosh^2(x) - sinh^2(x) \equiv 1$ using the exponential definition for cosh(x) 2 and sinh(x)

 $\left(\frac{e^{x}+e^{-x}}{2}\right)^{2} = \frac{e^{2x}+e^{-2x}+2}{4} \left(\frac{e^{x}-e^{-x}}{2}\right)^{2} = \frac{e^{2x}+e^{-2x}-2}{4}$ (M1 – Use correct exponential forms of cosh(x) and sinh(x) and both brackets squared)

A1 – Finishes proof with no errors seen.

b) Show that the equation $tan^2(x) = 3 \sec(x) + 9 = 0$ can be written as $sec^2(x) - 2$ $3 \sec(x) - 10 = 0$

 $sec^{2}(x) - 1 = 3sec(x) + 9$ (M1 – Uses correct identity $1 + tan^{2}(x) \equiv sec^{2}(x)$)

 $sec^{2}(x) - 3sec(x) - 10 = 0$ (A1 – without wrong working)

c) Hence, solve $tan^2(x) = 3 \sec(x) + 9$ giving all values of x in the interval $0 \le x \le 360$ giving solutions to 2 d.p. where necessary

(sec(x) + 2)(sec(x) - 5) = 0 (M1 – correct factorisation)

sec(x) = 5 or sec(x) = -2 (A1 – Both)

$$\frac{1}{\cos(x)} = 5 \quad \rightarrow \quad \cos(x) = \frac{1}{5}$$

$$\frac{1}{\cos(x)} = -2 \quad \rightarrow \quad \cos(x) = -\frac{1}{2}$$

 $x = 78.46^{\circ}, 281.54^{\circ}, 120^{\circ}, 240^{\circ}$ (A1 – two correct, A2 – all four correct)

d) Sketch the graph of $y = 3 \sinh(2x) + 2$

2

(e) Prove that $sin(x) = \frac{e^{ix} - e^{-ix}}{2i}$ $e^{ix} = cos(x) + isin(x)$ (B1 - correct use of Euler's Formula) $e^{i(-x)} = cos(-x) + isin(-x)$ = cos(x) - isin(x) (M1 - Use of odd and even functions) $e^{ix} - e^{-ix} = 2isin(x)$ (M1 - Subtracting either way round) $sin(x) = \frac{e^{ix} - e^{-ix}}{2i}$ (A1 - All correct with no errors seen)

f) Find the first three terms in the series expansion of cos(*x*) using Maclaurin's expansion

$$f(x) = \cos(x) \rightarrow f(0) = 1$$

$$f'(x) = -\sin(x) \rightarrow f'(0) = 0$$

$$f''(x) = -\cos(x) \rightarrow f''(0) = -1$$

$$f'''(x) = \sin(x) \rightarrow f'''(0) = 0$$

$$f'v(x) = \cos(x) \rightarrow f'v(0) = 1$$

(M1 – correct values from differentiation – allow one error)

Hence, $cos(x) \approx 1 - \frac{x^2}{2} + \frac{x^4}{24}$ (A1 – All correct)

i) Given $(1 + x)^{-1} \approx 1 - x + x^2$, find the first three non-zero terms in the expansion of sec(x), in ascending order.

$$sec(x) = \frac{1}{\cos(x)} = \frac{1}{1 - \frac{x^2}{2} + \frac{x^4}{24}}$$
 (B1 - FT from previous question)
$$= \left(1 - \frac{x^2}{2} + \frac{x^4}{24}\right)^{-1}$$
$$= \left\{1 - \left(-\frac{x^2}{2} + \frac{x^4}{24}\right) + \left(-\frac{x^2}{2} + \frac{x^4}{24}\right)^2\right\}$$
 (M1 - Uses given result)
$$= \left\{1 + \frac{x^2}{2} - \frac{x^4}{24} + \frac{x^4}{4} + \cdots\right\}$$
$$= 1 + \frac{x^2}{2} + \frac{5x^4}{24}$$
 (A1 - first two terms correct)
(A1 - last term correct)

Total 20 Marks

4

2

2

2

1

2

2

Question 5

Describe the transformation represented by the matrix $\begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}$

B1 - Rotation

B1 - 45° clockwise about the origin

i) Find A^2

$$A^{2} = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$
(M1 – Decent Attempt At Multiplying)
$$A^{2} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$
(A1 - All Correct)

ii) Describe the transformation represented by A^2

Rotation 90° clockwise about the origin (A1 – all required)

b) Given
$$A = \begin{pmatrix} a & -6 \\ 2 & a+6 \end{pmatrix}$$

i) Find det(A) giving your answer in terms of a.

 $det(A) = a(a+6) - (-6 \times 2)$ (M1 - correct use of determinant)

$$det(A) = a^2 + 6a + 12$$
 (A1)

ii) Show that the matrix A is non-singular for all values of a. 2

 $a^2 + 6a + 12 \equiv (a+3)^2 + 3$ (M1 – Attempts to complete the square)

$$(a+3)^2+3>0$$
 $\forall x$, hence $det(A) \neq 0$ (A1 – Needs Conclusion)

iii) Find
$$A^{-1}$$
, when a=3

$$A = \begin{pmatrix} 3 & -6 \\ 2 & 9 \end{pmatrix} \rightarrow det(A) = 27 + 12 = 39 \quad (M1)$$
$$A^{-1} = \frac{1}{39} \begin{pmatrix} 9 & 6 \\ -2 & 3 \end{pmatrix} \qquad (A1 - AII \text{ Correct})$$

- **c)** A rectangular hyperbola H has parametric equations given by $x = 3t, y = \frac{3}{t}, t \neq 0$. **3**
 - i) The line L has equation 6y = 4x 15. Show that L intersects H when $4t^2 5t 6 = 0$ H: x = 3t, $y = \frac{3}{t}$

 $L: 6y = 4x - 15 \rightarrow 6\left(\frac{3}{t}\right) = 4(3t) - 15 \rightarrow 18 = 12t^2 - 15t$ (M1- Attempts to substitute x and y into line – A1 – all correct)

$$12t^2 - 15t - 18 = 0 \quad \rightarrow \quad 4t^2 - 5t - 6 = 0 \quad (A1)$$

ii) Find $\frac{dy}{dx}$ at the point where t=2

 $\frac{dx}{dt} = 3, \ \frac{dy}{dt} = -\frac{3}{t^2} \qquad (M1 - \text{for both})$ $\frac{dy}{dx} = \frac{dy}{dt} \times \frac{dt}{dx} = -\frac{3}{t^2} \times \frac{1}{3} \qquad (M1 - \text{Use of the chain rule})$ $At \ t = 2, \ \frac{dy}{dx} = -\frac{3}{4} \times \frac{1}{3} = -\frac{1}{4} \quad (A1)$

ii) The line intersects the hyperbola at two points, a and b. Find the coordinates **3** of a and the coordinates of b.

 $(t-2)(4t+3) = 0 \rightarrow t = 2, t = -\frac{3}{4}$ (M1 - factorises quadratic in t) When $t = 2, x = 6, y = \frac{3}{2} \rightarrow (6, \frac{3}{2})$ (A1) When $t = -\frac{3}{4}, x = -\frac{9}{4}, y = -4 \rightarrow (-\frac{9}{4}, -4)$ (A1)

Total 20 Marks

Marks

3

End of paper

Learning Outcomes matrix

Question	Learning Outcomes assessed	Marker can differentiate between varying levels of achievement
1	1, 2, 5, 6	Yes
2	1,4,6	Yes
3	2,8	Yes
4	6,7,8	Yes
5	3,4	Yes

Grade descriptors

Learning Outcome	Pass	Merit	Distinction
Understand different	Demonstrate	Demonstrate	Demonstrate
techniques to solve cubic	adequate	robust	highly
equations and write	understanding of	understanding of	comprehensive
expressions in terms of their	techniques	techniques	understanding of
partial fractions			techniques
Be able to work with complex	Demonstrate	Demonstrate	Demonstrate
numbers, perform arithmetic	ability to perform	ability to perform	ability to perform
calculations using complex	the tasks	the tasks	the tasks to the
numbers, solve higher order		consistently well	highest standard
polynomials with complex			
roots and sketch regions in			
the complex plane	-		
Be able to perform arithmetic	Demonstrate	Demonstrate	Demonstrate
operations using matrices,	ability to perform	ability to perform	ability to perform
understand basic	techniques	techniques	techniques to the
transformations using		consistently well	nignest standard
matrices and, in addition,			
transformations and			
calculate the inverse of a			
matrix			
Inderstand the properties of	Demonstrate	Demonstrate	Demonstrate
rational functions and	adequate	robust	highly
understand conic sections	understanding of	understanding of	comprehensive
	techniques	techniques	understanding of
	teeninques		techniques
Understand how to use	Demonstrate	Demonstrate	Demonstrate
sigma notation to calculate	adequate	robust	highly
the sum of simple finite	understanding of	understanding of	comprehensive
series, and appreciate the	techniques	techniques	understanding of
relationship between the			techniques
roots of polynomials and			
their coefficients			

Grade descriptors continue on next page

			Marks
Learning Outcome	Pass	Merit	Distinction
Understand further techniques in calculus to differentiate combinations of functions, how to use these techniques to solve problems involving functions given parametrically and how to derive Maclaurin and Taylor series	Demonstrate adequate understanding of techniques	Demonstrate robust understanding of techniques	Demonstrate highly comprehensive understanding of techniques
Understand further trigonometry and hyperbolic functions	Demonstrate adequate understanding of techniques	Demonstrate robust understanding of techniques	Demonstrate highly comprehensive understanding of techniques
Understand Euler's relation and De Moivre's theorem and derive relations between trigonometric functions and hyperbolic functions	Demonstrate adequate level of understanding	Demonstrate robust level of understanding	Demonstrate highly comprehensive level of understanding