

Mathematics for University Study

[Day] [Month] [Year]

Examination Paper

Sample Assessment

Answer ALL questions.

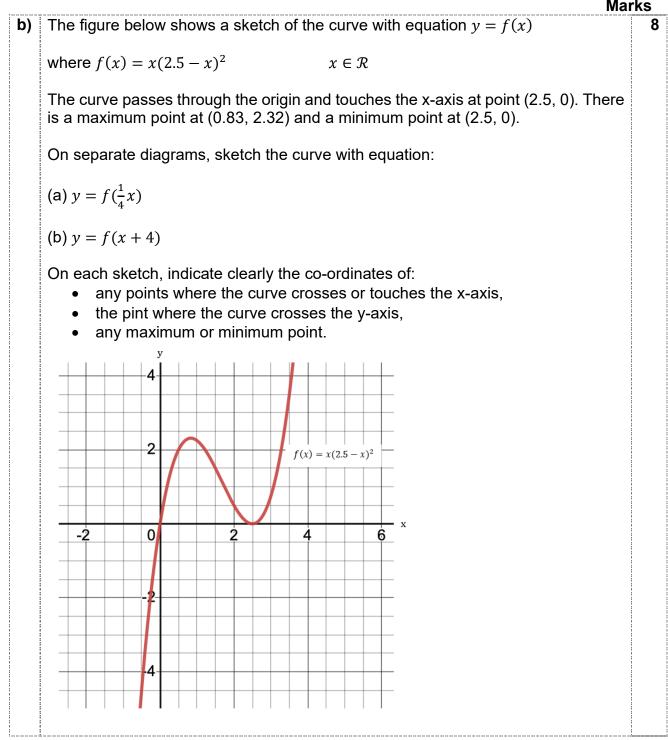
Clearly cross out surplus answers.

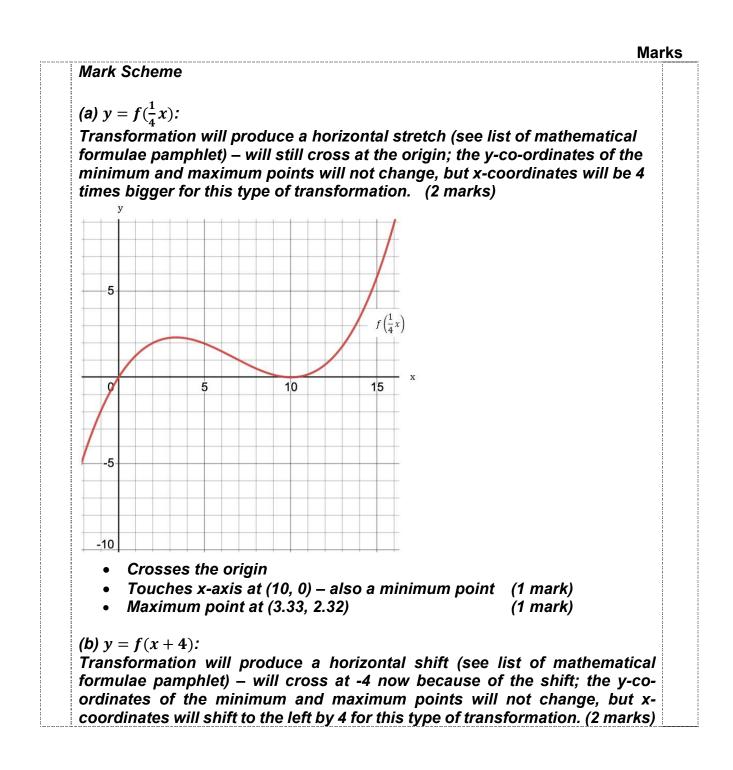
Time: 1.5 hours

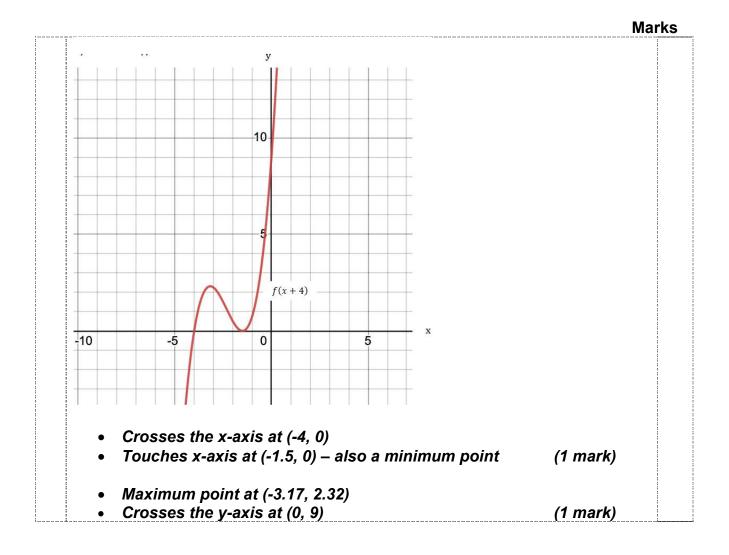
The maximum mark for this paper is 100.

Any reference material brought into the examination room must be handed to the invigilator before the start of the examination.

Candidates are allowed to use a scientific calculator during this examination.


	Answer ALL questions	
	Ma	rks
Qu	estion 1	
a)	Simplify $(4\sqrt{5})^2$	1
	Mark Scheme	
	$(4\sqrt{5})^2 = 4^2 \times (\sqrt{5})^2 = 16 \times 5 = 80$ (1 mark)	
b)	Simplify $\frac{\sqrt{6}}{2\sqrt{6}+3\sqrt{2}}$, giving your answer in the form of a + \sqrt{b} , where a and b are integers.	4
	Mark Scheme	
	$\frac{\sqrt{6}}{2\sqrt{6}+3\sqrt{2}} = \frac{\sqrt{6}}{2\sqrt{6}+3\sqrt{2}} \times \frac{2\sqrt{6}-3\sqrt{2}}{2\sqrt{6}-3\sqrt{2}}$ (1 mark) = $\frac{12-3\sqrt{12}}{24-18}$ (1 mark)	
	$= \frac{12 - 6\sqrt{3}}{6}$ (1 mark)	
	$= 2 - \sqrt{3}$ (1 mark)	
c)	Let $f(x) = 3x^3 - 19x^2 + 33x - 9$ Prove that $(x - 3)$ is a factor of $f(x)$	2
	Mark Scheme	
	$f(3) = 3(3)^3 - 19(3)^2 + 33(3) - 9$	
	f(3) = 81 - 171 + 99 - 9 = 0 (1 mark)	
	Therefore, $(x - 3)$ is a factor of $f(x)$ (1 mark)	

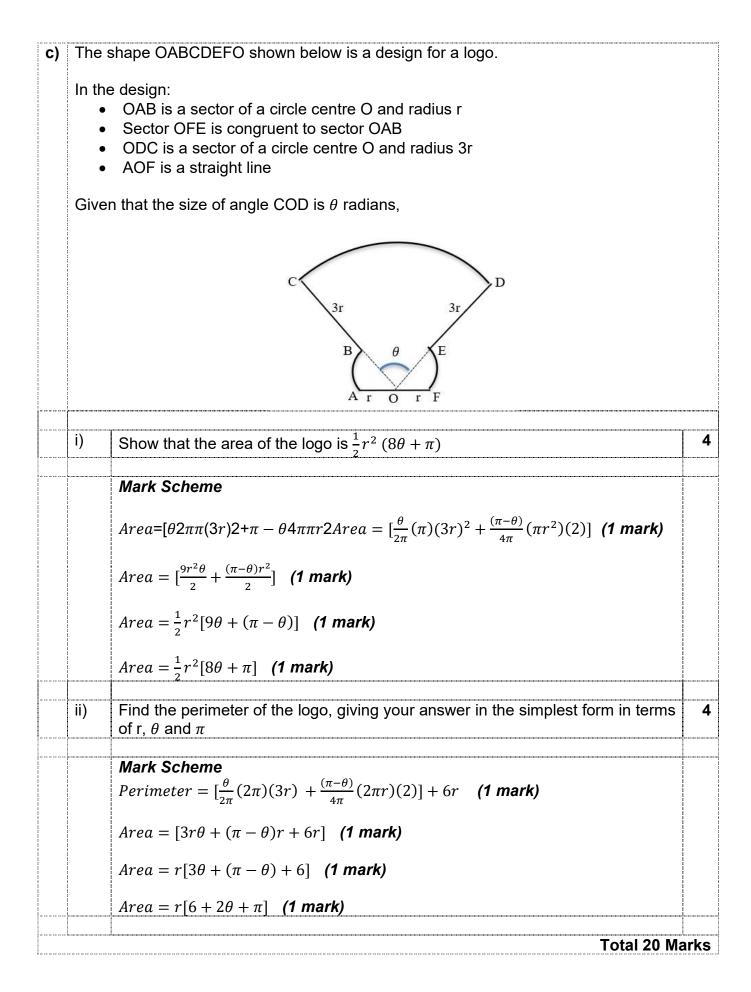

d)	Let $f(x) = 3x^3 - 19x^2 + 33x - 9$ Using algebra, show that $f(x) = 0$ has only two distinct roots.	4						
	Mark Scheme							
	$3x^3 - 19x^2 + 33x - 9 \div (x - 3) = 3x^2 - 10x + 3$ (By long division) (1 mark)							
	$3x^2 - 10x + 3 = (3x - 1)(x - 3)$ (Any factorisation method can be used) (1 mark)							
	Therefore, $3x^3 - 19x^2 + 33x - 9 \div (x - 3) = (3x - 1)(x - 3)^2$ (1 mark)							
	The TWO (2) distinct roots are $x = 3, \frac{1}{3}$ (1 mark)							
e)	Given that k is a constant and the curve with equation $y = f(x + k)$ passes through the origin, find the TWO (2) possible values of k.	2						
	Mark Scheme							
	f(x+k)=0							
	$x + k = 3, \frac{1}{3}$ (1 mark)							
	$x = 0$ at the origin. Therefore, $k = 3, \frac{1}{3}$ (1 mark)							
f)	The line l_1 has equation $3x + 2y - 5 = 0$ The line l_2 has equation $y = mx + 5$, where m is a constant.	2						
	Given that I_1 and I_2 are perpendicular, find the value of m to THREE (3) decimal places.							
	Mark Scheme							
	Line $l1: y = -1.5x + 2.5$ Line $l2: y = mx + 5$							
	Lines l1 and l2 are perpendicular to each other: $-1.5 \times m = -1$ (1 mark) Therefore, $m = 0.667$ (i.e., $\frac{2}{3}$) (1 mark)							


g)	Lines I_1 and I_2 in part (f) above meet at the point P. Find the x and y co-ordinates of P.	5
	Mark Scheme	
	$\frac{2}{3}x + 5 = -\frac{3}{2}x + \frac{5}{2}$ (1 mark)	
	$\frac{2}{3}x + \frac{3}{2}x = -5 + \frac{5}{2}$ (1 mark)	
	$\frac{13}{6}x = -\frac{5}{2}$ (1 mark)	
	$x = -\frac{30}{26} = -\frac{15}{13}$ (1 mark)	
	$y = -\frac{3}{2}(-\frac{15}{13}) + \frac{5}{2} = \frac{55}{13}$ (1 mark)	
	Total 20 Ma	arks
Qu	estion 2	
a)	$g(x) = \frac{3x+4}{x-2} \qquad x \ge 4$	
	i) Find $g(g(4))$	2
	Mark Scheme	
	$g(4) = \frac{(3 \times 4) + 4}{4 - 2} = 8$ (1 mark)	
	$g(g(4)) = \frac{(3 \times 8) + 4}{8 - 2} = \frac{14}{3}$ (1 mark)	
	ii) State the range of g	1
	Mark Scheme	
	$3 < g \leq 8$	

iii)	Find $g^{-1}(x)$	3
	Mark Scheme	
	$g = \frac{3x+4}{x-2}$ (1 mark)	
	gx - 2g = 3x + 4	
	x(g-3) = 4 + 2g (1 mark)	
	$x = \frac{(4+2g)}{(g-3)}$	
	$g^{-1}(x) = \frac{(4+2x)}{(x-3)}$ (1 mark)	

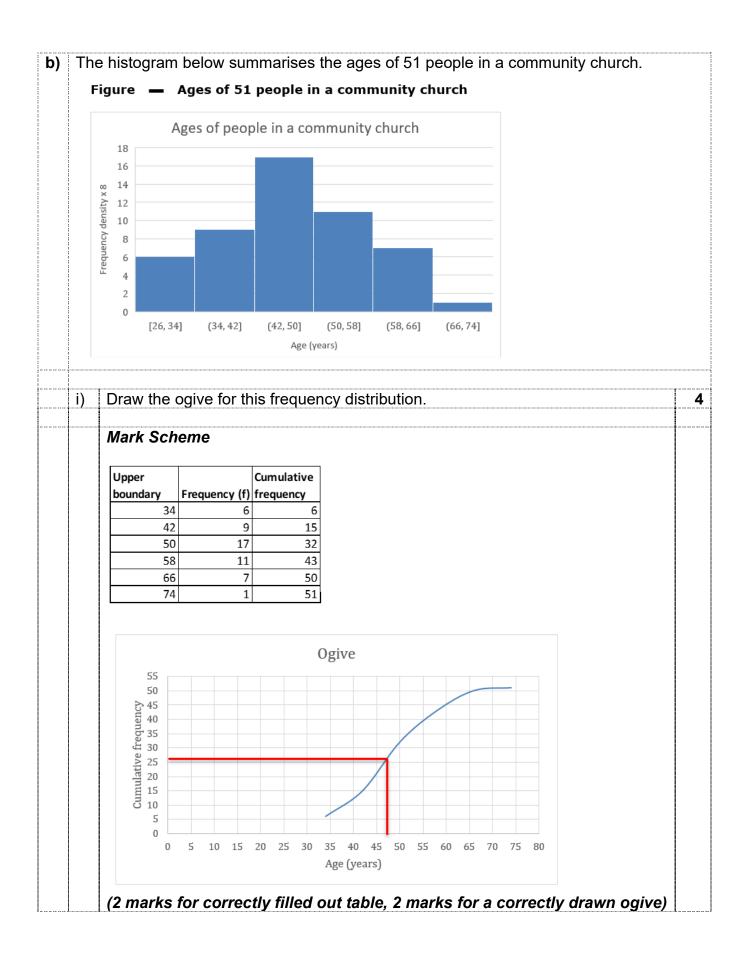
Marks

	Mar	ks
Fin	id the set of values of x for which:	
i)	2 - 3x < 7 + 5x	
	Mark Scheme $2 - 3x < 7 + 5x$	
	-5 < 8x (1 mark)	
	$x > -\frac{5}{8}$ (1 mark)	
ii)	$5x^2 + 13x - 6 < 0$	
	Mark Scheme	
	$5x^2 + 13x - 6 < 0$	
	(5x-2)(x+3) < 0 [Factorise] (1 mark)	
	$-3 < x < \frac{2}{5}$ (1 mark)	
iii)	both $2 - 3x < 7 + 5x$ and $5x^2 + 13x - 6 < 0$	4
	Mark Scheme	
	$x > -\frac{5}{8}$ (1 mark) and $x < \frac{2}{5}$ (1 mark) [Between -3 and $-\frac{5}{8}$ will not satisfy the first inequality]	
	Total 20 Ma	irk


Marks

Qu	estion 3	11 KS
a)	Solve the equation $x\sqrt{2} - \sqrt{32} = x$	3
	Writing the answer as a surd in simplest form.	
	Mark Scheme	
	$x\sqrt{2} - \sqrt{32} = x$	
	$x\sqrt{2} - 4\sqrt{2} = x$ (1 mark)	
	$x(\sqrt{2}-1)(\sqrt{2}+1) = 4\sqrt{2} \times (\sqrt{2}+1)$ (1 mark)	
	$x = (8 + 4\sqrt{2})$ (1 mark)	
b)	Solve the equation	3
	$9^{(4x-3)} = \frac{1}{3\sqrt{3}}$	
	Mark Scheme	
	$9^{(4x-3)} = \frac{1}{3\sqrt{3}}$	
	$(3^2)^{(4x-3)} = (3^{-1})(3^{-\frac{1}{2}})$ (1 mark)	
	$3^{(8x-6)} = 3^{-\frac{3}{2}}$	
	$8x - 6 = -\frac{3}{2}$	
	$8x = \frac{9}{2}$ (1 mark)	
	$x = \frac{9}{16}$ (1 mark)	
C)	Let $g(x) = 2x^3 + 3x^2 - 29x - 60$ Use the factor theorem to show that $g(x)$ is divisible by $(x - 4)$	2
	Mark Scheme	
	$g(3) = 2(4)^3 + 3(4)^2 - 29(4) - 60$	
	g(3) = 128 + 48 - 116 - 60 = 0 (1 mark)	
	Therefore, $(x - 4)$ is a factor of $g(x)$ (1 mark)	

	Mar	ks
d)	For $g(x)$ in part (c) above, showing all your working, write $g(x)$ as a product of THREE (3) linear factors.	4
	Mark Scheme	
	$2x^3 + 3x^2 - 29x - 60 \div (x - 4) = 2x^2 + 11x + 15$ (By long division) (1 mark)	
	$2x^2 + 11x + 15 = (2x + 5)(x + 3)$ (Any factorisation method can be used) (1 mark)	
	Therefore, $2x^3 + 3x^2 - 29x - 60 \div (x - 4) = (2x + 5)(x + 3)(x - 4)$ (1 mark)	
	The three roots are $x = 4, -\frac{5}{2}, -3$ (1 mark)	
e)	Using algebra, find all solutions of the equation	3
	$3x^3 + 14x^2 - 5x = 0$	
	Mark Scheme	
	$3x^3 + 14x^2 - 5x = 0$	
	$x(3x^2 + 14x - 5) = 0$ (1 mark)	
	x(3x-1)(x+5) = 0 (1 mark)	
	$x = 0, \frac{1}{3}, -5$ (1 mark)	
f)	find all real solutions of: $3(y-3)^6 + 14(y-3)^4 - 5(y-3)^2 = 0$	3
	Mark Scheme	
	$(y-3)^2 = 0 \Longrightarrow y = 3$ (1 mark)	
	$(y-3)^2 = \frac{1}{3} \Longrightarrow y = 3 \pm \sqrt{1/3}$ (1 mark)	
	$(y-3)^2 = -5 \Longrightarrow$ no real solution (1 mark)	


Give	$n \frac{16^{(x+2)}}{4^{(y-3)}} = 64$, express y in terms of x, writing your answer in simplest form.	2				
Mark	Scheme					
$\frac{16^{(x+x)}}{4^{(y-x)}}$	$\frac{1}{3} = 64$					
$\frac{(4^2)^{(x+2)}}{4^{(y-3)}} = 4^3$ $4^{(x+2-y+3)} = 4^3 $ (1 mark)						
y = x	z + 2 (1 mark)					
	Total 20 Ma	arks				
estio	ו 4					
The line I passes through the points A (4, 6) and B (2, 9).						
i) Find an equation for I in the form $ax + by + c = 0$ where a, b and c are integ						
	Mark Scheme					
	y = mx + c					
	$m = \frac{(9-6)}{(2-4)} = \frac{-3}{2}$ (1 mark)					
	$6 = \frac{-3}{2}(4) + c \Longrightarrow c = 12$ (1 mark)					
	$y = \frac{-3}{2}x + 12 \Longrightarrow 2y = -3x + 24$ (1 mark)					
	3x + 2y - 24 = 0 (1 mark)					
ii)	Find the length AB, leaving your answer in surd form.	2				
	Mark Scheme					
	Length $AB = \sqrt{(9-6)^2 + (2-4)^2}$ (1 mark) $= \sqrt{9+4} = \sqrt{13}$ (1 mark)					
	Mark $\frac{16^{(x+1)}}{4^{(y-1)}}$ $\frac{(4^2)^{(x)}}{4^{(y-1)}}$ $4^{(x+2)}$ x - y y = x estion The I i)	Mark Scheme $\frac{16^{(x+2)}}{4^{(y-3)}} = 64$ $\frac{(4^2)^{(x+2)}}{4^{(y-3)}} = 4^3$ $\frac{(4^2)^{(x+2)}}{4^{(y-3)}} = 4^3$ (1 mark) $x - y + 5 = 3$ $y = x + 2$ (1 mark)Total 20 MiTotal 20 Miestion 4Total 20 MiTotal 20 Miestion 4Total 20 MiTotal 20 Miestion 4Total 20 MiImage: Colspan="2">Total 20 MiImage: Colspan="2">Total 20 Miestion 4Total 20 MiImage: Colspan="2">Total 20 MiImage: Colspan="2">Image: Colspan="2" <td co<="" td=""></td>				

T	iii)	The po	oint C has co	ordinates ((p, 6) and <i>AC</i> =	= <i>CB</i> . Find the value of p.	3		
		Mark	Scheme						
	$AC = \sqrt{(p-4)^2}$ (1 mark)								
		CB =	$\sqrt{(2-p)^2+3}$	3 ² (1 mark)				
		(p-4)	$^{2} = (2 - p)^{2}$	$+9 \Rightarrow 4p$	$p = 3 \Longrightarrow p = \frac{3}{4}$	(1 mark)			
b)	Use proof by exhaustion to show that for $n \in \mathbb{N}$, $n \leq 4$, $(n + 1)^4 > 4^n$						3		
	Mark Scheme								
	-		r a correctly imum of 2 n		table as belo	ow. Deduct 1 mark for each error			
	<u></u>	n	(n+1) ⁴	4 ⁿ	Comment				
		1	16	4	16 > 4				
		2	81	16	81 > 16				
	3 256 64 256 > 64								
		3	200	04	200 01				

Qu	esti	Mar on 5	'ks					
a)	1	university produces THREE (3) newsletters. ONE (1) newsletter is about ironment, ONE (1) is about games technology and ONE (1) is about sports.	ut the					
	1	tudent at the university is selected at random and the events E, G and S are d follows:	efinec					
	 E is the event that the student reads the newsletter about the environment. G is the event that the student reads the newsletter about games technology. E is the event that the student reads the newsletter about sports. 							
	1	e Venn diagram below, where a, b, c and d are probabilities, gives the probabi h subset.	lity fo					
		E 0.06 0.04 0.10 G d d d d d d d d d d d d d d d d d d						
		0.34 d						
	i)	Find the proportion of students in the university who read exactly one of these newsletters.	6					
		Mark Scheme 0.06 + 0.10 + 0.34 = 0.50 (1 mark)						
	ii)	If no student read all the t newsletters and P(E) = 0.24, find: (i) the value of b (ii) the value of a						
		Mark Scheme						
		$(i) P(E \cap G \cap S) = b = 0$						
		(ii) P(E) = 0.24						
		0.06 + 0.04 + a + b = 0.24						
		$0.10 + a = 0.24 \implies a = 0.14$ (1 mark for working out, 1 mark for correct value of a, 1 mark for correct value of b)	:t					

	Mark	(S
iii)	Given that P (S G) = $\frac{6}{11}$	4
	Find	
	(i) the value of c	
	(ii) the value of d	
	Mark Scheme	
	(<i>i</i>) P (S G) = $\frac{(c+b)}{(c+b+0.10+0.04)} = \frac{6}{11} \Longrightarrow \frac{c}{(c+0.14)} = \frac{6}{11} \Longrightarrow c = 0.168$	
	(1 mark for working out, 1 mark for correct value of c)	
	$(ii) \ 0.06 + 0.10 + 0.34 + 0.14 + 0.168 + d = 1 \Longrightarrow d = 0.192$	
	1 mark for working out, 1 mark for correct value of d)	
		l

	ii)	estimate the median age								
		Mark Scher	ne							
		At cumulative frequency of 26 (50 percentile), median age = 47.2 years (1 <i>mark</i>) (see also the ogive diagram).								
	iii)	Estimate the	e mean age				3			
		Mark Scheme								
		Midpoint (X) 30	Frequency (f) 6	(X)(f) 180						
		38	9	342						
		46	17	782						
		54 62	11	594 434						
		70	1	434						
		Sum	51	2402						
			Mean =	47.10	years					
		(2 marks fo	r correctly f	illed out ta	ble, '	1 mark for the correct mean figure)				
C)	Δ 11	niversitv mad	le a profit of l	F100 000 ir	n ite fi	rst year of operation, Year 1.				
•,	7.4			2100,000 11	i no n					
			•			erations that the yearly profit will increas	e by			
	12%	6 each year s	so that the ye	arly profits	will fe	orm a geometric sequence.				
	Acc	ording to the	model.							
		<u>.</u>	,							
	i)	Show that th	ne profit in Ye	ear 3 will be	e£14	0493.	1			
		Mark Scher	ne							
		Year $4 = \pounds 1$	00000(1.12 ³)) = £14049	3 (1	mark)				
	ii)	Find the first	t vear when t	he vearly r	orofit v	vill exceed £1 million.	2			
	,		your whom a	no youny p	nont i		-			
		Mark Scher	ne							
		100000(1.12	$2^{n-1}) > 1000$	000 (1 m	ark)					
		$(1.12^{n-1}) >$	10							
		$n-1 > \frac{\log 1}{\log 1}$	$\frac{0}{2} \Rightarrow n - 1 > 2$	> 20.31 ⇒	n > 2	1.31 [22nd year] (1 mark)				
		log1.	12			- [] (

iii)	Find the total profit for the first 20 years of trading, giving your answer to the nearest £1000	1
 	Mark Scheme	
	$S_{20} = \frac{a(1-r^n)}{(1-r)} = \frac{100000(1-1.12^{20})}{(1-1.12)} = \pm 7.205 \text{ million}$ (1 mark)	
 	Total 20 Ma	arks

End of paper

Learning Outcomes matrix

Question	Learning Outcomes / Assessment Criteria assessed	Marker can differentiate between varying levels of achievement
1	LO1, LO3, LO4	Yes
2	LO3, LO4	Yes
3	LO3, LO4	Yes
4	LO2, LO3, LO4	Yes
5	LO2, LO5, LO6	Yes

Grade descriptors

Learning Outcome	Pass (40-59%)	Merit (60-69%)	Distinction (70-100%)
 1.Be able to develop fundamental knowledge, skills and understanding of number and algebra and be able to perform and solve a range of algebraic calculations, equations and inequalities 2.Acquire, select and apply mathematical techniques to solve sequence, ratio, proportion, rates of change and geometry problems 3.Be able to 	(40-59%) Demonstrates an adequate awareness and understanding of concepts, terminology, principles and processes with a reasonable application and use of mathematical principles, tools and techniques and satisfactory reference to theory through an adequate ability to perform calculations correctly using appropriate techniques and methods.	Demonstrates a consistent and accurate awareness and understanding of concepts, terminology, principles and processes with a detailed application and use of mathematical	Demonstrates an outstanding awareness and understanding of concepts, terminology, principles and processes with a highly comprehensive and sophisticated application and use of mathematical principles, tools and techniques and critical and meticulous reference to theory through an excellent ability to perform calculations consistently correctly and to the highest standard using appropriate techniques and methods.
mathematically, solve, reason, make deductions and inferences and draw conclusions within mathematics and other contexts			
4.Comprehend, interpret and communicate mathematical information in a variety of forms appropriate to the information and context.			
5.Recognise and apply the fundamentals of statistics and be able to present data in graphical form			
6.Recognise and apply the fundamentals of probability			